CSGN: Combined Channel- and Spatial-Wise Dynamic Gating Architecture for Convolutional Neural Networks
نویسندگان
چکیده
The explosive computation and memory requirements of convolutional neural networks (CNNs) hinder their deployment in resource-constrained devices. Because conventional CNNs perform identical parallelized computations even on redundant pixels, the saliency various features an image should be reflected for higher energy efficiency market penetration. This paper proposes a novel channel spatial gating network (CSGN) adaptively selecting vital channels generating spatial-wise execution masks. A CSGN can characterized as dynamic spatial-aware module by maximally utilizing opportunistic sparsity. Extensive experiments were conducted CIFAR-10 ImageNet datasets based ResNet. results revealed that, with proposed architecture, amount multiply-accumulate (MAC) operations was reduced 1.97–11.78× 1.37–13.12× ImageNet, respectively, negligible accuracy degradation inference stage compared baseline architectures.
منابع مشابه
Convolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملDynamic Sampling Convolutional Neural Networks
We present Dynamic Sampling Convolutional Neural Networks (DSCNN), where the position-specific kernels learn from not only the current position but also multiple sampled neighbour regions. During sampling, residual learning is introduced to ease training and an attention mechanism is applied to fuse features from different samples. And the kernels are further factorized to reduce parameters. Th...
متن کاملDynamic Weight Alignment for Convolutional Neural Networks
In this paper, we propose a method of improving Convolutional Neural Networks (CNN) by determining the optimal alignment of weights and inputs using dynamic programming. Conventional CNNs convolve learnable shared weights, or filters, across the input data. The filters use a linear matching of weights to inputs using an inner product between the filter and a window of the input. However, it is ...
متن کاملPoint-wise Convolutional Neural Network
Deep learning with 3D data such as reconstructed point clouds and CAD models has received great research interests recently. However, the capability of using point clouds with convolutional neural network has been so far not fully explored. In this paper, we present a convolutional neural network for semantic segmentation and object recognition with 3D point clouds. At the core of our network i...
متن کاملSimple And Efficient Architecture Search for Convolutional Neural Networks
Neural networks have recently had a lot of success for many tasks. However, neural network architectures that perform well are still typically designed manually by experts in a cumbersome trial-and-error process. We propose a new method to automatically search for well-performing CNN architectures based on a simple hill climbing procedure whose operators apply network morphisms, followed by sho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2022
ISSN: ['2079-9292']
DOI: https://doi.org/10.3390/electronics11172678